Турнир Городов — международная олимпиада по математике для школьников. Задания рассчитаны на учащихся 8−11 классов. Особенность Турнира городов в том, что он ориентирует участников не на спортивный успех, а на углублённую работу над задачей, т. е. развивает качества, необходимые в исследовательской работе.
Турнир проводится ежегодно с 1980 года, а с 1989 года проводятся 2 тура — осенний и весенний, каждый из которых состоит из двух вариантов — базового и сложного. Сложный вариант олимпиады сопоставим по трудности со Всероссийской и Международной математической олимпиадой, базовый — несколько проще. Участие в каком-либо туре и варианте не зависит от участия в другом. Каждый вариант проводится отдельно для младших (8−9 классы) и для старших (10−11 классы). Любой школьник (любого класса) может участвовать в Турнире для своего класса или старше.
В каждом варианте каждого тура засчитываются три лучших результата по задачам. Участники, показавшие в одном из вариантов какого-либо тура достаточно высокий результат, получают диплом победителя Турнира городов. Местные оргкомитеты имеют право награждать премиями за меньшие результаты.
Финальный устный тур проводится только для 11-классников из России и других стран СНГ, получивших диплом победителя в 10 классе (осенью или весной) или на осеннем туре в 11 классе. Кроме того, на устный тур приглашаются 11-классники, получившие в 11 или 10 классе I или II премию Московской математической олимпиады. Льготы для поступления в профильные вузы предоставляются победителям и призёрам устного тура (несколько десятков человек ежегодно).
Авторы лучших работ в 9−10 классах приглашаются на Летнюю математическую конференцию Турнира городов. Непременным её участником является самовар, ставший по этой причине символом Международного математического Турнира городов.